Bounded Approximate Symbolic Dynamic Programming for Hybrid MDPs
نویسندگان
چکیده
Recent advances in symbolic dynamic programming (SDP) combined with the extended algebraic decision diagram (XADD) data structure have provided exact solutions for mixed discrete and continuous (hybrid) MDPs with piecewise linear dynamics and continuous actions. Since XADD-based exact solutions may grow intractably large for many problems, we propose a bounded error compression technique for XADDs that involves the solution of a constrained bilinear saddle point problem. Fortuitously, we show that given the special structure of this problem, it can be expressed as a bilevel linear programming problem and solved to optimality in finite time via constraint generation, despite having an infinite set of constraints. This solution permits the use of efficient linear program solvers for XADD compression and enables a novel class of bounded approximate SDP algorithms for hybrid MDPs that empirically offers order-ofmagnitude speedups over the exact solution in exchange for a small approximation error.
منابع مشابه
Approximate Linear Programming for Solving Hybrid Factored MDPs
Hybrid approximate linear programming (HALP) has recently emerged as a promising approach to solving large factored Markov decision processes (MDPs) with discrete and continuous state and action variables. Its central idea is to reformulate initially intractable problem of computing the optimal value function as its linear programming approximation. In this work, we present the HALP framework a...
متن کاملEfficient Solution Algorithms for Factored MDPs
This paper addresses the problem of planning under uncertainty in large Markov Decision Processes (MDPs). Factored MDPs represent a complex state space using state variables and the transition model using a dynamic Bayesian network. This representation often allows an exponential reduction in the representation size of structured MDPs, but the complexity of exact solution algorithms for such MD...
متن کاملOverview of Linear Program Approximations for Factored Continuous and Hybrid-State Markov Decision Processes
Approximate linear programming (ALP) is as one of the most promising methods for solving complex factored MDPs. The method was applied first to tackle problems with discrete state variables. More recently the ALP methods that can solve MDPs with continuous and hybrid (both continuous and discrete) variables have emerged. This paper briefly reviews the work on ALP methods for such problems.
متن کاملSymbolic Dynamic Programming
Decision-theoretic planning aims at constructing a policy for acting in an uncertain environment that maximizes an agent’s expected utility along a sequence of steps that solve a goal. For this task, Markov decision processes (MDPs) have become the standard model. However, classical dynamic programming algorithms for solving MDPs require explicit state and action enumeration, which is often imp...
متن کاملSymbolic Dynamic Programming for Discrete and Continuous State MDPs
Many real-world decision-theoretic planning problems can be naturally modeled with discrete and continuous state Markov decision processes (DC-MDPs). While previous work has addressed automated decision-theoretic planning for DCMDPs, optimal solutions have only been defined so far for limited settings, e.g., DC-MDPs having hyper-rectangular piecewise linear value functions. In this work, we ext...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1309.6871 شماره
صفحات -
تاریخ انتشار 2013